Induction

Data Types

Type Classes

イロト イヨト イヨト イヨト ニヨー

FIN O

Lecture 2: Induction, Data Types, Type Classes

Johannes Åman Pohjola University of New South Wales Term 2 2023

Data Types

Type Classes

FIN O

Announcements

Quiz 01: You still have until tomorrow 11:59:59 PM to do it.

Data Types

FIN O

Recap: Induction

Suppose we want to prove that a property P(n) holds for all natural numbers n.

Remember that the set of natural numbers $\ensuremath{\mathbb{N}}$ can be defined as follows:

Definition of Natural Numbers

0 is a natural number.

2 For any natural number n, n + 1 is also a natural number.

Data Types

FIN O

Recap: Induction

Therefore, to show P(n) for all n, it suffices to show:

- P(0) (the *base case*), and
- assuming P(k) (the *inductive hypothesis*), $\Rightarrow P(k+1)$ (the *inductive case*).

Example

Show that $f(n) = n^2$ for all $n \in \mathbb{N}$, where:

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ 2n - 1 + f(n - 1) & \text{if } n > 0 \end{cases}$$

・ロット 白マ キョット キャー マークタイ

Data Types

Type Classes

FIN O

Induction on Lists

Haskell lists can be defined similarly to natural numbers.

- **Definition of Haskell Lists**
 - is a list.
 - Por any list xs, x:xs is also a list (for any item x).

⁻¹Haskell is a lazy language: really, we should say all finite=lists ≞ ⊢ ત ≣ ન ગવભ

FIN O

Induction on Lists

Haskell lists can be defined similarly to natural numbers.

Definition of Haskell Lists

[] is a list.

Por any list xs, x:xs is also a list (for any item x).

This means, if we want to prove that a property P(ls) holds for all lists ls^1 , it suffices to show:

- P([]) (the base case)
- P(x:xs) for all items x, assuming the inductive hypothesis P(xs).

Demo: map preserves the length of its input

¹Haskell is a lazy language: really, we should say all finite dists => (=> = ∽ < ⊂

Type Classes

FIN O

Properties of Programs

• Reasoning about functional programs: equational reasoning + structural induction

FIN O

Properties of Programs

- Reasoning about functional programs: equational reasoning + structural induction
- Structural induction: works over lists and other data types

FIN O

Properties of Programs

- Reasoning about functional programs: equational reasoning + structural induction
- Structural induction: works over lists and other data types
- \bullet This course: simple induction proofs over $\mathbb N$ and lists.
- For more: COMP3161, COMP4161.

Data Types •00000000 FIN O

Enumerated Data Types

100 pts of ID

When applying for a bank account in NSW, you have to provide documents used to verify your identity. Each document is worth some points, and you need a total of 100 or more points to successfully verify your identity.

Real-life example:

- **Primary documents**: *Passport* or *Birth Certificate*. Each worth 70 pts.
- Secondary: *Driver's License* or *Student ID*. The first document used from this list is worth 40 pts, any additional items 25 pts.
- Tertiary: Existing credit cards. Worth 25 pts.

Induction

Data Types

Type Classes

Enumerated Data Types

Task 1

You work for a bank. Your task is to write a program that calculates the total point value of a given list of documents.

FIN O

Compound Data Types

While working with days of a month, you might use a type like this:

type MonthDay = (Int, Int) -- (month, day)

Notice that:

- Nothing distinguishes your Int-pair from any other Int-pair.
- You can provide e.g. a pair of image coordinates to a function that expects a MonthDay: static type checking does not work for you.

nduction

Data Types

Type Classes

FIN O

Compound Data Types

Instead, you can use data
 data MonthDay = MonthDay Int Int
...or better yet...

nduction

Data Types

Type Classes

FIN O

Compound Data Types

```
Instead, you can use data
    data MonthDay = MonthDay Int Int
...or better yet...
    type Day = Int
    data Month = Jan | Feb | Mar | ...
    data MonthDay = MonthDay Month Day
```

nduction

Data Types

Type Classes

FIN O

Compound Data Types

```
Instead, you can use data
    data MonthDay = MonthDay Int Int
...or better yet...
    type Day = Int
    data Month = Jan | Feb | Mar | ...
    data MonthDay = MonthDay Month Day
```

Multiple Constructors

We can of course have multiple constructors. Types with more than one constructor are sometimes called *sum types*. Example: Zoom meetings.

```
data WeekDay = Mon | Tue | Wed | ...
data ZoomMeetingTime
 = Once Year MonthDay
```

| RecurringWeekly WeekDay

16

Type Classes

FIN O

Recursive and Parametric Types

Types can have type parameters:

data Maybe a = Just a | Nothing

Type Classes

Recursive and Parametric Types

```
Types can have type parameters:
```

```
data Maybe a = Just a | Nothing
```

```
Types can be recursive:
data List a = Nil | Cons a (List a)
```

Recursive and Parametric Types

```
Types can have type parameters:
```

```
data Maybe a = Just a | Nothing
```

```
Types can be recursive:
data List a = Nil | Cons a (List a)
```

We can even define natural numbers, where 2 is encoded as Succ(Succ Zero):

data Natural = Zero | Succ Natural

・ロト ・ 理ト ・ ヨト ・ ヨー ・ つへぐ

Induction 0000 Data Types

Type Classes

FIN O

Types in Design

Sage Advice

An old adage due to Yaron Minsky (of Jane Street) is:

Make illegal states unrepresentable.

Choose types that *constrain* your implementation as much as possible. Then failure scenarios are eliminated by construction.

Data Types 000000●00 Type Classes

FIN O

Types in Design

Sage Advice

An old adage due to Yaron Minsky (of Jane Street) is:

Make illegal states unrepresentable.

Choose types that *constrain* your implementation as much as possible. Then failure scenarios are eliminated by construction.

Data Types

FIN O

Partial Functions

Failure to follow Yaron's excellent advice leads to partial functions.

Definition

A *partial function* is a function not defined for all possible inputs. Examples: head, tail, (!!), division

Partial functions should be avoided, because they can crash your program. How do we eliminate partiality?

Data Types

FIN O

Partial Functions

Failure to follow Yaron's excellent advice leads to partial functions.

Definition

A *partial function* is a function not defined for all possible inputs. Examples: head, tail, (!!), division

Partial functions should be avoided, because they can crash your program. How do we eliminate partiality?

 We can enlarge the codomain, usually with a Maybe type: safeHead :: [a] -> Maybe a -- Q: How is this safer? safeHead (x:xs) = Just x safeHead [] = Nothing

Data Types

FIN O

Partial Functions

Failure to follow Yaron's excellent advice leads to partial functions.

Definition

A *partial function* is a function not defined for all possible inputs. Examples: head, tail, (!!), division

Partial functions should be avoided, because they can crash your program. How do we eliminate partiality?

- We can enlarge the codomain, usually with a Maybe type: safeHead :: [a] -> Maybe a -- Q: How is this safer? safeHead (x:xs) = Just x safeHead [] = Nothing
- Or we can constrain the domain to be more specific: safeHead' :: NonEmpty a -> a -- Q: How to define?

Parse, don't validate

safeHead :: [a] -> Maybe a
safeHead (x:xs) = Just x
safeHead [] = Nothing
safeHead' :: NonEmpty a -> a
safeHead' (One x _) = x
safeHead' (Cons x _) = x

Sage Advice

A slogan from Alexis King:

Parse, don't validate.

< □ > < 回 > < 三 > < 三 > < 三 > < □ > < □ > <

Parse, don't validate

```
safeHead :: [a] -> Maybe a
safeHead (x:xs) = Just x
safeHead [] = Nothing
safeHead' :: NonEmpty a -> a
safeHead' (One x _) = x
safeHead' (Cons x _) = x
```

Sage Advice

A slogan from Alexis King:

Parse, don't validate.

Means:

- Validation function should return structured data which cannot represent illegal states (parse).
- Other functions should take only input types they can safely consume (don't validate)

Data Types

Type Classes

FIN O

Type Classes

You have already seen functions such as:

- compare
- (==)
- (+)
- show

that work on multiple types, and their corresponding constraints on type variables Ord, Eq, Num and Show.

Data Types

Type Classes

FIN O

Type Classes

You have already seen functions such as:

- compare
- (==)
- (+)
- show

that work on multiple types, and their corresponding constraints on type variables Ord, Eq, Num and Show.

These constraints are called *type classes*, and can be thought of as a set of types for which certain operations are implemented.

Show

The Show type class is a set of types that can be converted to strings. It is defined like:

class Show a where -- nothing to do with OOP
 show :: a -> String

Show

The Show type class is a set of types that can be converted to strings. It is defined like:

```
class Show a where -- nothing to do with OOP
show :: a -> String
Types are added to the type class as an instance like so:
instance Show Bool where
show True = "True"
show False = "False"
```


Show

The Show type class is a set of types that can be converted to strings. It is defined like:

```
class Show a where -- nothing to do with OOP
show :: a -> String
Types are added to the type class as an instance like so:
instance Show Bool where
show True = "True"
show False = "False"
```

We can also define instances that depend on other instances:

```
instance Show a => Show (Maybe a) where
show (Just x) = "Just " ++ show x
show Nothing = "Nothing"
```

Fortunately for us, Haskell supports automatically deriving instances for some classes, including Show.

Induction 0000 Data Types

Type Classes

FIN O

Semigroup

Semigroups

A *semigroup* is a pair of a set S and an operation $\bullet: S \to S \to S$ where the operation \bullet is *associative*.

Semigroup

Semigroups

A *semigroup* is a pair of a set S and an operation $\bullet: S \to S \to S$ where the operation \bullet is *associative*. Associativity is defined as, for all *a*, *b*, *c*:

$$(a \bullet (b \bullet c)) = ((a \bullet b) \bullet c)$$

Haskell has a type class for semigroups! The associativity law is enforced only by programmer discipline:

```
class Semigroup s where
 (<>) :: s -> s -> s
  -- Law: (<>) must be associative.
```

What instances can you think of?

Induction

Data Types

Type Classes

FIN O

Semigroup

Let's implement additive (RGB) colour mixing: data Color = Color Int Int Int Int -- Red, Green, Blue, Alpha (transparency) instance Semigroup Color where (Color r1 g1 b1 a1) \langle (Color r2 g2 b2 a2) = Color (mix r1 r2) (mix g1 g2) (mix b1 b2) (mix a1 a2)where mix x1 x2 = min 255 (x1 + x2)Associativity is satisfied.

Announcements	Induction	Data Types	Type Classes	FIN			
O	0000		○○○○●○○○○	O			
Monoid							

Monoids

A monoid is a semigroup (S, \bullet) equipped with a special *identity* element z : S such that $x \bullet z = x$ and $z \bullet y = y$ for all x, y.

Announcements	Induction	Data Types	Type Classes	FIN			
O	0000		○○○○●○○○○	O			
Monoid							

Monoids

A monoid is a semigroup (S, \bullet) equipped with a special *identity* element z : S such that $x \bullet z = x$ and $z \bullet y = y$ for all x, y.

class (Semigroup a) => Monoid a where mempty :: a

Announcements	Induction	Data Types	Type Classes	FIN			
O	0000		○○○○●○○○○	O			
Monoid							

Monoids

A monoid is a semigroup (S, \bullet) equipped with a special *identity* element z : S such that $x \bullet z = x$ and $z \bullet y = y$ for all x, y.

class (Semigroup a) => Monoid a where

mempty :: a

For colours, the identity element is transparent black:

```
instance Monoid Color where
```

mempty = Color 0 0 0 0

For each of the semigroups discussed previously:

- Are they monoids?
- If so, what is the identity element?

Announcements O	Induction	Data Types	Type Classes ○○○○●○○○○	FIN o			
Monoid							

Monoids

A monoid is a semigroup (S, \bullet) equipped with a special *identity* element z : S such that $x \bullet z = x$ and $z \bullet y = y$ for all x, y.

class (Semigroup a) => Monoid a where

mempty :: a

For colours, the identity element is transparent black:

```
instance Monoid Color where
```

mempty = Color 0 0 0 0

For each of the semigroups discussed previously:

- Are they monoids?
- If so, what is the identity element?

Are there any semigroups that are not monoids?

Data Types

FIN O

Newtypes

There are multiple possible monoid instances for numeric types like Integer:

- The operation (+) is associative, with identity element 0
- The operation (*) is associative, with identity element 1

Induction

Data Types

Type Classes

イロト イロト イヨト イヨト 三日

FIN O

Newtypes

There are multiple possible monoid instances for numeric types like Integer:

• The operation (+) is associative, with identity element 0

• The operation (*) is associative, with identity element 1 Haskell doesn't use any of these, because there can be only one instance per type per class in the entire program (including all dependencies and libraries used).

A common technique is to define a separate type that is represented identically to the original type, but can have its own, different type class instances.

Newtypes

There are multiple possible monoid instances for numeric types like Integer:

• The operation (+) is associative, with identity element 0

• The operation (*) is associative, with identity element 1 Haskell doesn't use any of these, because there can be only one instance per type per class in the entire program (including all dependencies and libraries used).

A common technique is to define a separate type that is represented identically to the original type, but can have its own, different type class instances.

In Haskell, this is done with the newtype keyword.

FIN O

Newtypes

A newtype declaration is much like a data declaration except that there can be only one constructor and it must take exactly one argument:

newtype Score = S Integer

```
instance Semigroup Score where
S x \langle S y = S (x + y) \rangle
```

instance Monoid Score where

```
mempty = S 0
```

Here, Score is represented identically to Integer, and thus no performance penalty is incurred to convert between them.

In general, newtypes are a great way to prevent mistakes. Use them frequently!

Induction

Data Types

Type Classes

FIN O

Ord

Ord is a type class for inequality comparison:

class Ord a where
 (<=) :: a -> a -> Bool
What laws should instances satisfy?

Induction 0000 Data Types

Type Classes

イロト イヨト イヨト イヨト ニヨー

FIN O

Ord

Ord is a type class for inequality comparison:

class Ord a where
 (<=) :: a -> a -> Bool
What laws should instances satisfy?
For all x, y, and z:

● *Reflexivity*: x <= x.

44

Induction 0000 Data Types

Type Classes

FIN O

Ord

Ord is a type class for inequality comparison:

Transitivity: If x <= y and y <= z then x <= z.</p>

Induction 0000 Data Types

Type Classes

イロト イヨト イヨト イヨト ニヨー

FIN O

Ord

Ord is a type class for inequality comparison:

class Ord a where
 (<=) :: a -> a -> Bool
What laws should instances satisfy?
For all x, y, and z:
 Reflexivity: x <= x.
 Transitivity: If x <= y and y <= z then x <= z.</pre>

Antisymmetry: If x <= y and y <= x then x == y.</p>

Induction 0000 Data Types

Type Classes

FIN O

Ord

Ord is a type class for inequality comparison:

class Ord a where
 (<=) :: a -> a -> Bool
What laws should instances satisfy?
For all x, y, and z:
 Reflexivity: x <= x.
 Transitivity: If x <= y and y <= z then x <= z.
 Antisymmetry: If x <= y and y <= x then x == y.</pre>

Totality: Either x <= y or y <= x</p>

Data Types

Type Classes

FIN O

Ord

Ord is a type class for inequality comparison:

Relations that satisfy these four properties are called *total orders*. Without the fourth (totality), they are called *partial orders*.

Data Types

Type Classes

FIN O

Eq

Eq is a type class for equality or equivalence:

class Eq a where

(==) :: a -> a -> Bool

What laws should instances satisfy?

Data Types

Type Classes

FIN O

Eq

Eq is a type class for equality or equivalence:

- class $\ensuremath{\text{Eq}}$ a where
 - (==) :: a -> a -> Bool

What laws should instances satisfy? For all x, y, and z:

• Reflexivity: x == x.

Eq is a type class for equality or equivalence:

- class Eq a where
 - (==) :: a -> a -> Bool

What laws should instances satisfy? For all x, y, and z:

- **O** Reflexivity: x == x.
- Transitivity: If x == y and y == z then x == z.

Eq is a type class for equality or equivalence:

class Eq a where

(==) :: a -> a -> Bool

What laws should instances satisfy? For all x, y, and z:

- Reflexivity: x == x.
- Transitivity: If x == y and y == z then x == z.
- **3** Symmetry: If x == y then y == x.

Eq is a type class for equality or equivalence:

class Eq a where

(==) :: a -> a -> Bool

What laws should instances satisfy? For all x, y, and z:

- Reflexivity: x == x.
- Transitivity: If x == y and y == z then x == z.
- Symmetry: If x == y then y == x.

Relations that satisfy these are called equivalence relations.

Eq is a type class for equality or equivalence:

class Eq a where

(==) :: a -> a -> Bool

What laws should instances satisfy? For all x, y, and z:

- Reflexivity: x == x.
- Transitivity: If x == y and y == z then x == z.
- Symmetry: If x == y then y == x.

Relations that satisfy these are called *equivalence relations*. Some argue that the Eq class should be only for *equality*, requiring stricter laws like:

If x == y then f x == f y for all functions f

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

But this is debated.

Assigned reading: Alexis King - Parse, don't validate (Blog Post) https://lexi-lambda.github.io/blog/2019/11/05/ parse-don-t-validate/ You don't have to understand all the example code, but you should familiarize yourself with the ideas in the blog post.

- Don't forget to submit Quiz 1.
- Exercise 1 and Quiz 2 will be released tomorrow.