
Announcements Induction Data Types Type Classes FIN

Software System Design and Implementation

Lecture 2: Induction, Data Types, Type Classes

Johannes Åman Pohjola
University of New South Wales

Term 2 2023

1

Announcements Induction Data Types Type Classes FIN

Announcements

Quiz 01: You still have until tomorrow 11:59:59 PM to do it.

2

Announcements Induction Data Types Type Classes FIN

Recap: Induction

Suppose we want to prove that a property P(n) holds for all
natural numbers n.
Remember that the set of natural numbers N can be defined as
follows:

Definition of Natural Numbers

1 0 is a natural number.

2 For any natural number n, n + 1 is also a natural number.

3

Announcements Induction Data Types Type Classes FIN

Recap: Induction

Therefore, to show P(n) for all n, it suffices to show:

1 P(0) (the base case), and

2 assuming P(k) (the inductive hypothesis),
⇒ P(k + 1) (the inductive case).

Example

Show that f (n) = n2 for all n ∈ N, where:

f (n) =

{
0 if n = 0

2n − 1 + f (n − 1) if n > 0

4

Announcements Induction Data Types Type Classes FIN

Induction on Lists

Haskell lists can be defined similarly to natural numbers.

Definition of Haskell Lists

1 [] is a list.

2 For any list xs, x:xs is also a list (for any item x).

This means, if we want to prove that a property P(ls) holds for all
lists ls1, it suffices to show:

1 P([]) (the base case)

2 P(x:xs) for all items x , assuming the inductive hypothesis
P(xs).

Demo: map preserves the length of its input

1Haskell is a lazy language: really, we should say all finite lists
5

Announcements Induction Data Types Type Classes FIN

Induction on Lists

Haskell lists can be defined similarly to natural numbers.

Definition of Haskell Lists

1 [] is a list.

2 For any list xs, x:xs is also a list (for any item x).

This means, if we want to prove that a property P(ls) holds for all
lists ls1, it suffices to show:

1 P([]) (the base case)

2 P(x:xs) for all items x , assuming the inductive hypothesis
P(xs).

Demo: map preserves the length of its input

1Haskell is a lazy language: really, we should say all finite lists
6

Announcements Induction Data Types Type Classes FIN

Properties of Programs

Reasoning about functional programs:
equational reasoning + structural induction

Structural induction: works over lists and other data types

This course: simple induction proofs over N and lists.

For more: COMP3161, COMP4161.

7

Announcements Induction Data Types Type Classes FIN

Properties of Programs

Reasoning about functional programs:
equational reasoning + structural induction

Structural induction: works over lists and other data types

This course: simple induction proofs over N and lists.

For more: COMP3161, COMP4161.

8

Announcements Induction Data Types Type Classes FIN

Properties of Programs

Reasoning about functional programs:
equational reasoning + structural induction

Structural induction: works over lists and other data types

This course: simple induction proofs over N and lists.

For more: COMP3161, COMP4161.

9

Announcements Induction Data Types Type Classes FIN

Enumerated Data Types

100 pts of ID

When applying for a bank account in NSW, you have to provide
documents used to verify your identity. Each document is worth
some points, and you need a total of 100 or more points to
successfully verify your identity.

Real-life example:

Primary documents: Passport or Birth Certificate. Each
worth 70 pts.

Secondary: Driver’s License or Student ID. The first
document used from this list is worth 40 pts, any additional
items 25 pts.

Tertiary: Existing credit cards. Worth 25 pts.

10

Announcements Induction Data Types Type Classes FIN

Enumerated Data Types

Task 1

You work for a bank. Your task is to write a program that
calculates the total point value of a given list of documents.

11

Announcements Induction Data Types Type Classes FIN

Compound Data Types

While working with days of a month, you might use a type like this:

type MonthDay = (Int, Int) -- (month, day)

Notice that:

Nothing distinguishes your Int-pair from any other Int-pair.

You can provide e.g. a pair of image coordinates to a function
that expects a MonthDay: static type checking does not work
for you.

12

Announcements Induction Data Types Type Classes FIN

Compound Data Types

Instead, you can use data

data MonthDay = MonthDay Int Int

...or better yet...

type Day = Int

data Month = Jan | Feb | Mar | ...

data MonthDay = MonthDay Month Day

13

Announcements Induction Data Types Type Classes FIN

Compound Data Types

Instead, you can use data

data MonthDay = MonthDay Int Int

...or better yet...

type Day = Int

data Month = Jan | Feb | Mar | ...

data MonthDay = MonthDay Month Day

14

Announcements Induction Data Types Type Classes FIN

Compound Data Types

Instead, you can use data

data MonthDay = MonthDay Int Int

...or better yet...

type Day = Int

data Month = Jan | Feb | Mar | ...

data MonthDay = MonthDay Month Day

15

Announcements Induction Data Types Type Classes FIN

Multiple Constructors

We can of course have multiple constructors. Types with more
than one constructor are sometimes called sum types. Example:
Zoom meetings.

data WeekDay = Mon | Tue | Wed | ...

data ZoomMeetingTime

= Once Year MonthDay

| RecurringWeekly WeekDay

16

Announcements Induction Data Types Type Classes FIN

Recursive and Parametric Types

Types can have type parameters:

data Maybe a = Just a | Nothing

Types can be recursive:

data List a = Nil | Cons a (List a)

We can even define natural numbers, where 2 is encoded as
Succ(Succ Zero):

data Natural = Zero | Succ Natural

17

Announcements Induction Data Types Type Classes FIN

Recursive and Parametric Types

Types can have type parameters:

data Maybe a = Just a | Nothing

Types can be recursive:

data List a = Nil | Cons a (List a)

We can even define natural numbers, where 2 is encoded as
Succ(Succ Zero):

data Natural = Zero | Succ Natural

18

Announcements Induction Data Types Type Classes FIN

Recursive and Parametric Types

Types can have type parameters:

data Maybe a = Just a | Nothing

Types can be recursive:

data List a = Nil | Cons a (List a)

We can even define natural numbers, where 2 is encoded as
Succ(Succ Zero):

data Natural = Zero | Succ Natural

19

Announcements Induction Data Types Type Classes FIN

Types in Design
Sage Advice

An old adage due to Yaron Minsky (of Jane Street) is:

Make illegal states unrepresentable.

Choose types that constrain your implementation as much as
possible. Then failure scenarios are eliminated by construction.

Example (Contact Details)

data Contact = C Name (Maybe Address) (Maybe Email)

is changed to:

data ContactDetails = EmailOnly Email

| PostOnly Address

| Both Address Email

data Contact = C Name ContactDetails

What failure state is eliminated here?

20

Announcements Induction Data Types Type Classes FIN

Types in Design
Sage Advice

An old adage due to Yaron Minsky (of Jane Street) is:

Make illegal states unrepresentable.

Choose types that constrain your implementation as much as
possible. Then failure scenarios are eliminated by construction.

Example (Contact Details)

data Contact = C Name (Maybe Address) (Maybe Email)

is changed to:

data ContactDetails = EmailOnly Email

| PostOnly Address

| Both Address Email

data Contact = C Name ContactDetails

What failure state is eliminated here?
21

Announcements Induction Data Types Type Classes FIN

Partial Functions

Failure to follow Yaron’s excellent advice leads to partial functions.

Definition

A partial function is a function not defined for all possible inputs.
Examples: head, tail, (!!), division

Partial functions should be avoided, because they can crash your
program. How do we eliminate partiality?

We can enlarge the codomain, usually with a Maybe type:

safeHead :: [a] -> Maybe a -- Q: How is this safer?

safeHead (x:xs) = Just x

safeHead [] = Nothing

Or we can constrain the domain to be more specific:

safeHead' :: NonEmpty a -> a -- Q: How to define?

22

Announcements Induction Data Types Type Classes FIN

Partial Functions

Failure to follow Yaron’s excellent advice leads to partial functions.

Definition

A partial function is a function not defined for all possible inputs.
Examples: head, tail, (!!), division

Partial functions should be avoided, because they can crash your
program. How do we eliminate partiality?

We can enlarge the codomain, usually with a Maybe type:

safeHead :: [a] -> Maybe a -- Q: How is this safer?

safeHead (x:xs) = Just x

safeHead [] = Nothing

Or we can constrain the domain to be more specific:

safeHead' :: NonEmpty a -> a -- Q: How to define?

23

Announcements Induction Data Types Type Classes FIN

Partial Functions

Failure to follow Yaron’s excellent advice leads to partial functions.

Definition

A partial function is a function not defined for all possible inputs.
Examples: head, tail, (!!), division

Partial functions should be avoided, because they can crash your
program. How do we eliminate partiality?

We can enlarge the codomain, usually with a Maybe type:

safeHead :: [a] -> Maybe a -- Q: How is this safer?

safeHead (x:xs) = Just x

safeHead [] = Nothing

Or we can constrain the domain to be more specific:

safeHead' :: NonEmpty a -> a -- Q: How to define?

24

Announcements Induction Data Types Type Classes FIN

Parse, don’t validate
safeHead :: [a] -> Maybe a

safeHead (x:xs) = Just x

safeHead [] = Nothing

safeHead' :: NonEmpty a -> a

safeHead' (One x _) = x

safeHead' (Cons x _) = x

Sage Advice

A slogan from Alexis King:

Parse, don’t validate.

Means:

Validation function should return structured data which
cannot represent illegal states (parse).

Other functions should take only input types they can safely
consume (don’t validate)

25

Announcements Induction Data Types Type Classes FIN

Parse, don’t validate
safeHead :: [a] -> Maybe a

safeHead (x:xs) = Just x

safeHead [] = Nothing

safeHead' :: NonEmpty a -> a

safeHead' (One x _) = x

safeHead' (Cons x _) = x

Sage Advice

A slogan from Alexis King:

Parse, don’t validate.

Means:

Validation function should return structured data which
cannot represent illegal states (parse).

Other functions should take only input types they can safely
consume (don’t validate)

26

Announcements Induction Data Types Type Classes FIN

Type Classes

You have already seen functions such as:

compare

(==)

(+)

show

that work on multiple types, and their corresponding constraints on
type variables Ord, Eq, Num and Show.

These constraints are called type classes, and can be thought of as
a set of types for which certain operations are implemented.

27

Announcements Induction Data Types Type Classes FIN

Type Classes

You have already seen functions such as:

compare

(==)

(+)

show

that work on multiple types, and their corresponding constraints on
type variables Ord, Eq, Num and Show.

These constraints are called type classes, and can be thought of as
a set of types for which certain operations are implemented.

28

Announcements Induction Data Types Type Classes FIN

Show

The Show type class is a set of types that can be converted to
strings. It is defined like:

class Show a where -- nothing to do with OOP

show :: a -> String

Types are added to the type class as an instance like so:

instance Show Bool where

show True = "True"

show False = "False"

We can also define instances that depend on other instances:

instance Show a => Show (Maybe a) where

show (Just x) = "Just " ++ show x

show Nothing = "Nothing"

Fortunately for us, Haskell supports automatically deriving

instances for some classes, including Show.

29

Announcements Induction Data Types Type Classes FIN

Show

The Show type class is a set of types that can be converted to
strings. It is defined like:

class Show a where -- nothing to do with OOP

show :: a -> String

Types are added to the type class as an instance like so:

instance Show Bool where

show True = "True"

show False = "False"

We can also define instances that depend on other instances:

instance Show a => Show (Maybe a) where

show (Just x) = "Just " ++ show x

show Nothing = "Nothing"

Fortunately for us, Haskell supports automatically deriving

instances for some classes, including Show.

30

Announcements Induction Data Types Type Classes FIN

Show

The Show type class is a set of types that can be converted to
strings. It is defined like:

class Show a where -- nothing to do with OOP

show :: a -> String

Types are added to the type class as an instance like so:

instance Show Bool where

show True = "True"

show False = "False"

We can also define instances that depend on other instances:

instance Show a => Show (Maybe a) where

show (Just x) = "Just " ++ show x

show Nothing = "Nothing"

Fortunately for us, Haskell supports automatically deriving

instances for some classes, including Show.

31

Announcements Induction Data Types Type Classes FIN

Semigroup

Semigroups

A semigroup is a pair of a set S and an operation • : S → S → S
where the operation • is associative.

Associativity is defined as, for all a, b, c :

(a • (b • c)) = ((a • b) • c)

Haskell has a type class for semigroups! The associativity law is
enforced only by programmer discipline:

class Semigroup s where

(<>) :: s -> s -> s

-- Law: (<>) must be associative.

What instances can you think of?

32

Announcements Induction Data Types Type Classes FIN

Semigroup

Semigroups

A semigroup is a pair of a set S and an operation • : S → S → S
where the operation • is associative.
Associativity is defined as, for all a, b, c :

(a • (b • c)) = ((a • b) • c)

Haskell has a type class for semigroups! The associativity law is
enforced only by programmer discipline:

class Semigroup s where

(<>) :: s -> s -> s

-- Law: (<>) must be associative.

What instances can you think of?

33

Announcements Induction Data Types Type Classes FIN

Semigroup

Let’s implement additive (RGB) colour mixing:

data Color = Color Int Int Int Int

-- Red, Green, Blue, Alpha (transparency)

instance Semigroup Color where

(Color r1 g1 b1 a1) <> (Color r2 g2 b2 a2)

= Color (mix r1 r2)

(mix g1 g2)

(mix b1 b2)

(mix a1 a2)

where

mix x1 x2 = min 255 (x1 + x2)

Associativity is satisfied.

34

Announcements Induction Data Types Type Classes FIN

Monoid

Monoids

A monoid is a semigroup (S , •) equipped with a special identity
element z : S such that x • z = x and z • y = y for all x , y .

class (Semigroup a) => Monoid a where

mempty :: a

For colours, the identity element is transparent black:

instance Monoid Color where

mempty = Color 0 0 0 0

For each of the semigroups discussed previously:

Are they monoids?

If so, what is the identity element?

Are there any semigroups that are not monoids?

35

Announcements Induction Data Types Type Classes FIN

Monoid

Monoids

A monoid is a semigroup (S , •) equipped with a special identity
element z : S such that x • z = x and z • y = y for all x , y .

class (Semigroup a) => Monoid a where

mempty :: a

For colours, the identity element is transparent black:

instance Monoid Color where

mempty = Color 0 0 0 0

For each of the semigroups discussed previously:

Are they monoids?

If so, what is the identity element?

Are there any semigroups that are not monoids?

36

Announcements Induction Data Types Type Classes FIN

Monoid

Monoids

A monoid is a semigroup (S , •) equipped with a special identity
element z : S such that x • z = x and z • y = y for all x , y .

class (Semigroup a) => Monoid a where

mempty :: a

For colours, the identity element is transparent black:

instance Monoid Color where

mempty = Color 0 0 0 0

For each of the semigroups discussed previously:

Are they monoids?

If so, what is the identity element?

Are there any semigroups that are not monoids?

37

Announcements Induction Data Types Type Classes FIN

Monoid

Monoids

A monoid is a semigroup (S , •) equipped with a special identity
element z : S such that x • z = x and z • y = y for all x , y .

class (Semigroup a) => Monoid a where

mempty :: a

For colours, the identity element is transparent black:

instance Monoid Color where

mempty = Color 0 0 0 0

For each of the semigroups discussed previously:

Are they monoids?

If so, what is the identity element?

Are there any semigroups that are not monoids?

38

Announcements Induction Data Types Type Classes FIN

Newtypes

There are multiple possible monoid instances for numeric types like
Integer:

The operation (+) is associative, with identity element 0

The operation (*) is associative, with identity element 1

Haskell doesn’t use any of these, because there can be only one
instance per type per class in the entire program (including all
dependencies and libraries used).

A common technique is to define a separate type that is
represented identically to the original type, but can have its own,
different type class instances.

In Haskell, this is done with the newtype keyword.

39

Announcements Induction Data Types Type Classes FIN

Newtypes

There are multiple possible monoid instances for numeric types like
Integer:

The operation (+) is associative, with identity element 0

The operation (*) is associative, with identity element 1

Haskell doesn’t use any of these, because there can be only one
instance per type per class in the entire program (including all
dependencies and libraries used).

A common technique is to define a separate type that is
represented identically to the original type, but can have its own,
different type class instances.

In Haskell, this is done with the newtype keyword.

40

Announcements Induction Data Types Type Classes FIN

Newtypes

There are multiple possible monoid instances for numeric types like
Integer:

The operation (+) is associative, with identity element 0

The operation (*) is associative, with identity element 1

Haskell doesn’t use any of these, because there can be only one
instance per type per class in the entire program (including all
dependencies and libraries used).

A common technique is to define a separate type that is
represented identically to the original type, but can have its own,
different type class instances.

In Haskell, this is done with the newtype keyword.

41

Announcements Induction Data Types Type Classes FIN

Newtypes

A newtype declaration is much like a data declaration except that
there can be only one constructor and it must take exactly one
argument:

newtype Score = S Integer

instance Semigroup Score where

S x <> S y = S (x + y)

instance Monoid Score where

mempty = S 0

Here, Score is represented identically to Integer, and thus no
performance penalty is incurred to convert between them.

In general, newtypes are a great way to prevent mistakes. Use
them frequently!

42

Announcements Induction Data Types Type Classes FIN

Ord

Ord is a type class for inequality comparison:

class Ord a where

(<=) :: a -> a -> Bool

What laws should instances satisfy?

For all x, y, and z:

1 Reflexivity: x <= x.

2 Transitivity: If x <= y and y <= z then x <= z.

3 Antisymmetry: If x <= y and y <= x then x == y.

4 Totality: Either x <= y or y <= x

Relations that satisfy these four properties are called total orders.
Without the fourth (totality), they are called partial orders.

43

Announcements Induction Data Types Type Classes FIN

Ord

Ord is a type class for inequality comparison:

class Ord a where

(<=) :: a -> a -> Bool

What laws should instances satisfy?
For all x, y, and z:

1 Reflexivity: x <= x.

2 Transitivity: If x <= y and y <= z then x <= z.

3 Antisymmetry: If x <= y and y <= x then x == y.

4 Totality: Either x <= y or y <= x

Relations that satisfy these four properties are called total orders.
Without the fourth (totality), they are called partial orders.

44

Announcements Induction Data Types Type Classes FIN

Ord

Ord is a type class for inequality comparison:

class Ord a where

(<=) :: a -> a -> Bool

What laws should instances satisfy?
For all x, y, and z:

1 Reflexivity: x <= x.

2 Transitivity: If x <= y and y <= z then x <= z.

3 Antisymmetry: If x <= y and y <= x then x == y.

4 Totality: Either x <= y or y <= x

Relations that satisfy these four properties are called total orders.
Without the fourth (totality), they are called partial orders.

45

Announcements Induction Data Types Type Classes FIN

Ord

Ord is a type class for inequality comparison:

class Ord a where

(<=) :: a -> a -> Bool

What laws should instances satisfy?
For all x, y, and z:

1 Reflexivity: x <= x.

2 Transitivity: If x <= y and y <= z then x <= z.

3 Antisymmetry: If x <= y and y <= x then x == y.

4 Totality: Either x <= y or y <= x

Relations that satisfy these four properties are called total orders.
Without the fourth (totality), they are called partial orders.

46

Announcements Induction Data Types Type Classes FIN

Ord

Ord is a type class for inequality comparison:

class Ord a where

(<=) :: a -> a -> Bool

What laws should instances satisfy?
For all x, y, and z:

1 Reflexivity: x <= x.

2 Transitivity: If x <= y and y <= z then x <= z.

3 Antisymmetry: If x <= y and y <= x then x == y.

4 Totality: Either x <= y or y <= x

Relations that satisfy these four properties are called total orders.
Without the fourth (totality), they are called partial orders.

47

Announcements Induction Data Types Type Classes FIN

Ord

Ord is a type class for inequality comparison:

class Ord a where

(<=) :: a -> a -> Bool

What laws should instances satisfy?
For all x, y, and z:

1 Reflexivity: x <= x.

2 Transitivity: If x <= y and y <= z then x <= z.

3 Antisymmetry: If x <= y and y <= x then x == y.

4 Totality: Either x <= y or y <= x

Relations that satisfy these four properties are called total orders.
Without the fourth (totality), they are called partial orders.

48

Announcements Induction Data Types Type Classes FIN

Eq

Eq is a type class for equality or equivalence:

class Eq a where

(==) :: a -> a -> Bool

What laws should instances satisfy?

For all x, y, and z:

1 Reflexivity: x == x.

2 Transitivity: If x == y and y == z then x == z.

3 Symmetry: If x == y then y == x.

Relations that satisfy these are called equivalence relations.
Some argue that the Eq class should be only for equality, requiring
stricter laws like:

If x == y then f x == f y for all functions f

But this is debated.

49

Announcements Induction Data Types Type Classes FIN

Eq

Eq is a type class for equality or equivalence:

class Eq a where

(==) :: a -> a -> Bool

What laws should instances satisfy?
For all x, y, and z:

1 Reflexivity: x == x.

2 Transitivity: If x == y and y == z then x == z.

3 Symmetry: If x == y then y == x.

Relations that satisfy these are called equivalence relations.
Some argue that the Eq class should be only for equality, requiring
stricter laws like:

If x == y then f x == f y for all functions f

But this is debated.

50

Announcements Induction Data Types Type Classes FIN

Eq

Eq is a type class for equality or equivalence:

class Eq a where

(==) :: a -> a -> Bool

What laws should instances satisfy?
For all x, y, and z:

1 Reflexivity: x == x.

2 Transitivity: If x == y and y == z then x == z.

3 Symmetry: If x == y then y == x.

Relations that satisfy these are called equivalence relations.
Some argue that the Eq class should be only for equality, requiring
stricter laws like:

If x == y then f x == f y for all functions f

But this is debated.

51

Announcements Induction Data Types Type Classes FIN

Eq

Eq is a type class for equality or equivalence:

class Eq a where

(==) :: a -> a -> Bool

What laws should instances satisfy?
For all x, y, and z:

1 Reflexivity: x == x.

2 Transitivity: If x == y and y == z then x == z.

3 Symmetry: If x == y then y == x.

Relations that satisfy these are called equivalence relations.
Some argue that the Eq class should be only for equality, requiring
stricter laws like:

If x == y then f x == f y for all functions f

But this is debated.

52

Announcements Induction Data Types Type Classes FIN

Eq

Eq is a type class for equality or equivalence:

class Eq a where

(==) :: a -> a -> Bool

What laws should instances satisfy?
For all x, y, and z:

1 Reflexivity: x == x.

2 Transitivity: If x == y and y == z then x == z.

3 Symmetry: If x == y then y == x.

Relations that satisfy these are called equivalence relations.

Some argue that the Eq class should be only for equality, requiring
stricter laws like:

If x == y then f x == f y for all functions f

But this is debated.

53

Announcements Induction Data Types Type Classes FIN

Eq

Eq is a type class for equality or equivalence:

class Eq a where

(==) :: a -> a -> Bool

What laws should instances satisfy?
For all x, y, and z:

1 Reflexivity: x == x.

2 Transitivity: If x == y and y == z then x == z.

3 Symmetry: If x == y then y == x.

Relations that satisfy these are called equivalence relations.
Some argue that the Eq class should be only for equality, requiring
stricter laws like:

If x == y then f x == f y for all functions f

But this is debated.

54

Announcements Induction Data Types Type Classes FIN

FIN

Assigned reading: Alexis King - Parse, don’t validate (Blog Post)
https://lexi-lambda.github.io/blog/2019/11/05/

parse-don-t-validate/ You don’t have to understand all the
example code, but you should familiarize yourself with the ideas in
the blog post.

1 Don’t forget to submit Quiz 1.

2 Exercise 1 and Quiz 2 will be released tomorrow.

55

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

	Announcements
	

	Induction
	

	Data Types
	

	Type Classes
	FIN

